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Thursday
Room 203 Room 005

08:00 - 08:55 Registration
08:55 - 09:00 Opening

09:00 - 09:45 Wim Vanroose: Asynchronous Krylov methods with deep
pipelines

09:55 - 10:20
Siegfried Cools: On parallel performance and numerical
stability of communication hiding pipelined Krylov methods
for solving large scale linear systems

Anastasia Kruchinina: Parallel recursive polynomial ex-
pansion for sparse density matrix construction in electronic
structure calculations

10:20 - 10:45 Sofia Bikopoulou: Checksum-based fault tolerance for
solving large linear systems on multicore architectures

Parikshit Upadhyaya: On the convergence factor of the
self-consistent field iteration

10:45 - 11:10 Martin Lanser: On the use of AMG methods designed for
elasticity problems in inexact BDDC methods

Jascha Knepper: An adaptive coarse space for the GDSW
algorithm

11:10 - 11:40 Coffee Break

11:40 - 12:05 Martin Köhler: Efficient computation of the QR decom-
position on GPU accelerated architectures

Emil Ringh: Krylov methods for low-rank commuting gen-
eralized Sylvester equations

12:05 - 12:30 Jens Saak: Towards high performance IRKA on hybrid
CPU-GPU systems

Ion Victor Gosea: Modeling and reduction of hybrid sys-
tems

12:30 - 12:55 Markus Wittmann: Performance analysis of sparse trian-
gular solve on current hardware architectures

Martin Kühn: Adaptive FETI-DP and BDDC methods
with a generalized transformation of basis

12:55 - 14:00 Lunch Break

14:00 - 14:45 Pierre Gosselet: Error estimation for FETI(DP) and
BDD(C)

14:45 - 15:10 Christie Louis Alappat: RACE: Recursive Algebraic Col-
oring Engine

15:10 - 15:35 Ian Zwaan: Krylov-Schur type restarts for the two-sided
Arnoldi method

15:35 - 16:05 Coffee Break

16:05 - 16:30 Giampaolo Mele: Disguised and new Quasi-Newton meth-
ods for nonlinear eigenvalue problems

16:30 - 16:55 Elias Jarlebring: The infinite Bi-Lanczos method for non-
linear eigenvalue problems

17:00 - 18:00 Meeting of the GAMM Activity Group “Applied and Numerical Linear Algebra”
19:00 Conference Dinner at the Brauhaus Päffgen (Friesenstraße 64–66)



Friday
Room 203 Room 005

09:30 - 10:15 Oliver Rheinbach: Nonlinear domain decomposition
solvers on the exascale

10:15 - 10:40 Jonas Thies: An optimal domain decomposition method
for the C-grid Navier-Stokes Jacobian

10:40 - 11:05 Philipp Birken: Additive W smoothers for multigrid meth-
ods for compressible flow problem

11:05 - 11:35 Coffee Break

11:35 - 12:00 Robert Luce: Incremental computation of the block trian-
gular matrix exponential

12:00 - 12:25 Behnam Hashemi: Computing enclosures for the expo-
nential of a symmetric matrix

12:25 - 12:50
Andreas Frommer: A general framework and analysis for
block Krylov subspace methods for the computation of ma-
trix functions

12:50 - 13:00 Closing Remarks
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Checksum-Based Fault Tolerance for solving large linear systems on multicore
architectures

Sofia Bikopoulou

Institute of Mathematics, Technische Universität Berlin

High-Performance Computing (HPC) systems were initially utilized with executing code on parallel
and distributed platforms, providing unique opportunities to industry and academia. The advent of
exascale computational architectures has shifted the focus from achieving massive parallelism to using
it in a more efficient manner; modern computational models now aim to support accurate and reliable
scientific operations.

The challenge of the past decades for HPC applications is to create systems that are both inex-
pensive and highly reliable. Given the current state-of-the-practice, fewer errors are introduced, but
not all errors are prevented. As computational demands in various scientific fields have increased, it is
more than essential to provide methods that deliver acceptable level of user-visible service and enable
the system’s continuous operation, even in the presence of faults. Locating and correcting soft errors
and faults due to numerical computations, while minimizing performance loss, is a primary goal that
needs to be achieved rapidly.

In this talk we present a technique for tolerating faults when solving large linear systems on HPC
platforms with the Generalized Minimum Residual method of Saad and Schultz. The way of achiev-
ing fault resilience is by using checkpointing and rollback recovery protocols, in combination with
Algorithm-Based Fault Tolerance using Checksums [1, 2]. We provide detection and correction of
software faults due to incorrect parallel numerical computations on a large-scale platform.

This is a joint work with Prof. Dr. Volker Mehrmann.
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Additive W smoothers for multigrid methods for compressible flow problem

Philipp Birkena, Jonathan Bullb and Antony Jamesonc

a Lund University, Centre for the Mathematical Sciences, Numerical Analysis
b Uppsala University, Division of Scientific Computing, Dept. of Information Technology

c Stanford University, Department of Aeronautics & Astronautics

We consider multigrid methods for compressible turbulent flow problems. For the Reynolds av-
eraged Navier-Stokes equations (RANS), important progress has been achieved for finite volume dis-
cretizations through a new class of preconditioned Runge-Kutta (RK) smoothers [4, 3]. We show that
properties of these schemes can be better understood if derived from general additive Runge-Kutta
(RK) methods [1]. This gives rise to two classes of preconditioners: Preconditioned additive explicit
RK and additive W methods. The latter class can be implemented exactly as the first one, with a
suitably chosen preconditioner.

As a preconditioner we look at an SGS preconditioner based on a simplified discretization developed
in [4, 2]. A crucial part is a cutoff function for zero eigenvalues, where the cutoff value has to be chosen.
We perform a local Fourier analysis of an SGS preconditioner for the Euler equations. The results can
be easily understood from the theory of time integration methods and give guidance on how to choose
the various parameters of the scheme.

Finally, numerical results for the RANS equations and pitching airfoils are presented that show
that with the new schemes, convergence rates below 0.8 can be acchieved.

References
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On Parallel Performance and Numerical Stability of Communication Hiding

Pipelined Krylov Methods for Solving Large Scale Linear Systems

Siegfried Coolsa and Wim Vanroosea

a University of Antwerp, Department of Mathematics & Computer Science, Middelheimlaan 1, 2020

Antwerp, Belgium. siegfried.cools@uantwerp.be, wim.vanroose@uantwerp.be.

Krylov subspace methods are well-known as e�cient solvers for large scale linear systems Ax = b.
Driven by the transition of hardware towards the exascale regime, research on the scalability of Krylov
subspace methods on massively parallel architectures has recently gained increased attention [1]. The
main bottleneck for e�cient parallel execution of Krylov solvers on large scale hardware is not the
sparse matrix-vector product (spmv) or the axpy (y ← αx+ y) operations, which are (mainly) com-
puted locally, but the communication overhead caused by global reductions in dot-product and norm
computations. Each global reduction phase requires the local computation of the dot-product, followed
by a reduction tree to gather the scalar result on a single processor, and a subsequent broadcasting
of the result to all workers. Time spent by this phase scales as log2(P ), where P is the number
of processors. Over the last decades signi�cant e�orts have been made to reduce and/or eliminate
the synchronization bottleneck in Krylov subspace methods. In addition to communication avoiding
methods [2], pipelined Krylov subspace methods [3, 4, 5] aim to hide global synchronization latency by
overlapping the global communication phase(s) by the spmv(s). Idle core time is thus minimized by
performing useful computations simultaneously to the time-consuming global synchronization phase
(`communication hiding'). In this talk we give an overview of recent developments in pipelined solvers
and we comment on the derivation of the algorithms. Numerical experiments with the pipe-CG [3],
pipe-GMRES [4] and pipe-BiCGStab [5] methods are presented, showing that pipelined methods are
able to achieve signi�cantly improved parallel scalability compared to standard Krylov methods on
present-day HPC hardware. However, the reorganization of the original Krylov subspace algorithm
into a pipelined variant introduces additional axpy operations that are required to recursively compute
auxiliary variables. These additional vector operations may in�uence the numerical stability of the al-
gorithm due to the ampli�cation of local rounding errors in �nite precision arithmetic. We investigate
the observed loss of maximal attainable accuracy through a numerical analysis of the rounding error
propagation behavior [6, 7] and propose various practical countermeasures for the accuracy loss [8, 9].
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A general framework and analysis for block Krylov subspace methods for the
computation of matrix functions

Andreas Frommera and Kathryn Lunda,b and Daniel B. Szyldb

a Bergische Universität Wuppertal, Wuppertal, Germany
b Temple University, Philadelphia, USA

We consider the situation where one aims at computing the action of a matrix function f(A)bi
on several vectors bi ∈ Rn, i = 1, . . . , s. The classicial approach would be to approximate from the
block Krylov subspace generated by A and the block vector B = [b1 | · · · bs], but this introduces
a non-neglegible overhead of the order of O(ns2) in terms of arithmetic operations per iteration.
Alternatives are the so-called global approach which effectively computes f(I ⊗ A)b with b ∈ Rns

obtained by stacking the individual vectors bi and using the Krylov subspace spanned by I ⊗A and b,
and the batched methods which just use a re-arrangement of loops.

In this talk, we show that all these methods can be seen as special cases of a general approach
relying on a matrix valued bilinear functional which takes its values in a ∗-algebra with unity. We use
this general approach to first derive a convergence theory for the resulting generalized block conjugate
gradient methods for solving linear systems and then use this to obtain convergence results for restarted)
generalized block Arnoldi methods for computing f(A)B in the case where f is a Stieltjes function.



Modeling and reduction of hybrid systems

Ion Victor Goseaa and Athanasios C. Antoulasb

a MPI Magdeburg
b Rice University Houston, MPI Magdeburg, Baylor College of Medicine Houston

Linear hybrid systems (or LHS’s in short) are dynamical systems which are characterized by both
continuous and discrete dynamics. The discrete dynamics is determined by a finite-state automaton,
while the continuous dynamics is described by sets of linear time varying equations.

The first part is closely related to the finite Moore-automaton which is a finite-state determin-
istic automaton equipped with inputs and possibly, with outputs. For the second part, the core is
represented by the subsystems or discrete modes which are described by a collection of differential or
difference equations. The discrete events interacting with the subsystems are governed by a piecewise
continuous function, i.e. the switching signal. LHSs can have state-space representations with finitely
many state variables, that are used to predict the future behavior of the system.

Hybrid systems offer suitable models for distributed embedded systems design where discrete con-
trols are routinely applied to continuous processes. In some cases, the complexity of such systems might
be very high. To cope with this issue, introduce model order reduction (MOR) techniques specifically
adjusted for such systems.

The proposed reduction method is centered around the definition of new type of infinite Gramians
for LHS that resemble the definitions previously encountered for the case of switched, bilinear or
stochastic systems. We would like to avoid constructing such Gramians as solutions of systems of
linear matrix inequalities (LMIs).

We are interested in the situation for which a common transformation that simultaneously bal-
ances all the subsystems of the LHS is either not known, does not exist or it is difficult to attain.
We construct a family of transformations, each for a specific mode, based on appropriately defined
Gramians. Then, as for the classical linear case, a reduced-order model is computed by truncating
the states corresponding to the small diagonal elements of the balanced diagonal Gramians. Finally,
several numerical examples illustrate the theoretical formulations.



Error estimation for FETI(DP) and BDD(C)

Pierre Gosseleta, Valentine Reyb, Augustin Parret- Freaudc, and Christian Reyc

a LMT, ENS Paris-Saclay/CNRS, France
b GeM, Univ. Nantes/CNRS, France

c Safran Tech, France

We consider linear elasticity problems approximated by the Finite Element (FE) method with
the resulting linear systems being solved by non-overlapping domain decomposition methods like
FETI(DP) or BDD(C). This presentation deals with the computation of guaranteed upper and lower
bounds of the error during the iterations of the solver.

The bounds we consider are based on the error in constitutive equation and on the residual equation.
These methods imply to recover certain displacement and stress fields with high regularity on the whole
structure. We first show that it is possible to intercept, during the iterations of FETI(DP) or BDD(C),
the information necessary for the parallel construction of such fields [3].

Then by a little modification of the classical bounds, we manage to obtain new bounds which
separate the algebraic error (due to the use of a DD iterative solver) from the discretization error (due
to the FE) [2]. These bounds provides an unbiased criterion to stop the iterations when the solver
error is less than the discretization error. They can also be used for the estimation of the error on
linear quantities of interest [1].

Assessments on 2D static linear mechanic problems illustrate the relevance of the separation of
sources of error and the independence of the bounds with respect to the substructuring. Finally, we
steer the iterative solver by an objective of precision on a quantity of interest. The strategy consists
in a sequence of solving, adaptive local remeshing and recycling of search directions, in order to reach
the desired quality for the quantity of interest with minimal computations.
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Computing enclosures for the exponential of a symmetric matrix

Andreas Frommera and Behnam Hashemib

aFakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097
Wuppertal, Germany

bDepartment of Mathematics, Shiraz University of Technology, Modarres BLVD., 71555-313 Shiraz,
Iran

Given a symmetric matrix A ∈ Rn×n, our goal is to compute an interval matrix that contains
all entries of the exact exponential of A [3]. We compare interval arithmetic version of the following
methods for computing enclosures to exp(A):

• spectral decomposition

• contour integration

• Horner evaluation of Taylor series (with scaling and squaring)

• Clenshaw recurrence applied to Chebyshev series (with scaling and squaring).

The first method is based on enclosures for the spectral decomposition of A. Assume that

A = V DV T ∈ V DV T , with V ∈ V ∈ IRn×n, D = Diag(λ1, . . . , λn) ∈D ∈ IRn×n,

V V T = I, and V and D are interval matrices which contain the matrices of exact eigenvectors V and
eigenvalues D of A, respectively. The exponential of A is then given as

exp(A) = V exp(D)V T ∈ V exp(D) V T ,

where exp(D) = Diag(exp(λ1), . . . , exp(λn)) is a diagonal interval matrix.
The contour integration approach is based on an interval arithmetic version of the N-points trape-

zoidal rule plus an enclosure bounding the discretization error of trapezoidal rule. Here we rigorously
compute sharp error bounds available for periodic integrands that are analytic and bounded on a strip
[8].

The third method, due to Goldsztejn and Neumaier [2], is an interval arithmetic version of the
scaling and squaring method in combination with the Horner’s method.

The fourth method is an interval arithmetic counterpart of the scaling and squaring method com-
bined with the Clenshaw recurrence. Specifically, we use the following four steps:

• Scale the matrix so that its spectrum lies in the canonical interval [−1,+1].

• Enclose the projected Chebyshev series at the scaled matrix with only 15 Chebyshev coefficients
[1]. This is done via interval Clenshaw’s algorithm adapted to the case that the input is a
matrix. Note that the coefficients of Chebyshev expansion of the exponential function are known
explicitly [5].

• Rigorously bound the truncation error in chopping Chebyshev series when applied to the scaled
matrix. See [7].

• Apply the squaring step via a level 3 BLAS implementation of an enclosure method which is
optimal with respect to overestimation suggested in [4].

The difficulty with the first approach above is that computing the interval matrices V and D
currently involves O(n4) arithmetic operations. See e.g., INTLAB’s verifyeig routine [6]. In contrast,
the last three methods all involve O(n3) operations. We compare the above four methods, report
numerical examples and highlight challenges ahead.
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The infinite Bi-Lanczos method for nonlinear eigenvalue problems

Sarah W. Gaafa and Elias Jarlebringb

a TU Eindhoven, Netherlands
b KTH Royal Institute of Technology, Sweden

We consider the problem of determining eigentriples of the nonlinear eigenvalue problem, i.e., the
problem to determine non-trivial (x, y, λ) such that

T (λ)x = 0 (1a)
T (λ)∗y = 0 (1b)

where T : C → Cn×n is an analytic function of λ. In this work we propose a two-sided Lanczos
method for the nonlinear eigenvalue problem. Similar to the linear case, this two-sided approach
provides approximations to both the right and left eigenvectors of the eigenvalues of interest. Our
method implicitly works with matrices and vectors with infinite size, but because particular (starting)
vectors are used, all computations can be carried out efficiently with finite matrices and vectors. We
specifically introduce a new way to represent infinite vectors that span the subspace corresponding
to the conjugate transpose operation for approximating the left eigenvectors. The approach can be
viewed as the Lanczos-adaption of the infinite Arnoldi method [3]. We show that also in this infinite-
dimensional interpretation the short recurrences inherent to the Lanczos procedure offer an efficient
algorithm regarding both the computational cost and the storage.

The general idea of the approach can be derived from an infinite-dimensional companion lineariza-
tion. We define the operator A by the infinite matrix

A :=




−1
1T (0)−1T ′(0) −1

2T (0)−1T ′′(0) −1
3T (0)−1T (3)(0) · · ·

1
1I

1
2I

1
3I

. . .




(2)

and formalize the equivalence with (6). By considering an appropriately defined operator domain. the
eigentriplet of A are equivalent to eigentriplets of the original nonlinear eigenvalue problem, i.e., an
eigentriplet of (6) is equivalent to

Av = µv (3a)
A∗w = µw (3b)

where λ = 1/µ.
Moreover, the equivalence reveals a structure in the eigevectors. For instance, the left eigenvector

w satisfies

w =
∞∑

j=1

(ST ⊗ I)j−1N∗λjz. (4)

where S is a shift-and-scale operator and N∗ an operator containing the blocks M(0)−1M (k)(0).
Our approach is derived by applying the two-sided Lanczos method for linear eigenproblems [1] to

the infinite-dimensional operator A. In order to represent the infinite-length vectors, we describe the
structure of the vectors needed for the subspaces. The Krylov subspace corresponding to A and A∗

can be characterized in a way which shows that the elements of the subspace can be represented with
a finite number of (finite-length) vectors.



By repeatedly applying this result the inner product of infinite vectors with the particular structure,
we can translate every operation in the two-sided Lanczos method, to finite vectors representing the
infinite vectors. See the full derivation in [2].

In general, m iterations of our approach requires O(nm3) floating-point operations. The impact of
this theoretical observation can lessened by certain improvements.

• We reformulate the computationally dominating part of the algorithm in terms of matrix-matrix
products, allowing implementation with BLAS level 3 operations, rather than operations with
(larger vectors) using BLAS level 2.

• We show how a reformulation of the algorithm can improve the performance if the nonlinear
eigenvalue problem can be expressed as a short sum of products of functions and matrices, i.e.,

T (λ) = T1f1(λ) + · · ·+ Tkfk(λ),

where k � n. The value k is small in many applications.

The mathematical software for the simulations are publicly available online.
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An Adaptive Coarse Space for the GDSW Algorithm

Alexander Heinleina and Axel Klawonna and Jascha Kneppera and Oliver Rheinbachb

a Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany,
{alexander.heinlein, axel.klawonn, jascha.knepper}@uni-koeln.de,
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Robust domain decomposition methods for solving second order elliptic problems with large varia-
tions in the coefficient rely on the construction of a suitable coarse space. We propose a robust coarse
space for the two-level overlapping Schwarz preconditioner, which is an adaptive extension of the en-
ergy minimizing coarse space known as GDSW (Generalized Dryja, Smith, Widlund). In particular,
we make use of eigenvalue problems using local Schur complements on subdomain edges and faces.
The convergence of a corresponding preconditioned Krylov method depends only on a user-specified
tolerance and is therefore independent of variations of the coefficient function. The proposed coarse
space (AGDSW) reduces to the standard GDSW coarse space if no additional coarse basis functions
are used. Furthermore, we suggest several variants of AGDSW to decrease the computational cost.



Efficient Computation of the QR Decomposition on GPU Accelerated
Architectures

Martin Köhlera

a Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Beside the LU decomposition, the QR decomposition is one of the basic tools in numerical linear
algebra, due to its numerical stability. It offers a broad field of applications ranging from, e.g., solving
under/over-determined linear systems [3], over preprocessing in generalised eigensolvers [4] to iterative
algorithms for spectral division [5].

The most common way of implementation, in public software projects, is the Householder QR
decomposition. The performance of this algorithm was improved over the last decades resulting in
the availability of a number of BLAS level-3 based implementations. The main idea behind these
block algorithms is the grouping of k Householder transformations into the so called compact WY
representation. This lifts the rank-one updates used in the classical Householder approach to rank-k
updates, which exploit the memory hierarchies present in common computer architectures much more
optimally. Similar to the LU decomposition this algorithm can be ported to a hybrid CPU-GPU
implementation featuring communication hiding, asynchronous operations, and parallel execution on
both CPUs and GPUs.

The hybrid scheme splits the components of the BLAS level-3 algorithm into a CPU and a GPU
part. To this end, we assume that A is a block column matrix, i.e.

A =
[
A1 A2 A3 A4

]
.

The first step of the decomposition computes

A1 = Q1R1

on the CPU and, on the GPU, updates the trailing matrix according to

QT
1

[
A2 A3 A4

]
=
[
QT

1A2 QT
1A3 QT

1A4

]
=
[
Ã2 Ã3 Ã4

]
.

As soon as Ã2 gets ready on the accelerator it can be transferred back to the host, where it can be
decomposed into Ã2 = Q2R2, while the GPUs still works on the updates of Ã3 and Ã4. Obviously, the
width of the blocks in A should be chosen such that the CPU has decomposed the next block before
the update of the trailing matrix columns finishes. In view of the emerging properties of modern
hybrid architectures this can present a problem whenever there is a considerably large performance
gap between the CPUs and the GPUs, in favour of the GPUs. Then, on the one hand, the width of the
blocks needs to be small to reduce the workload on the CPUs but, on the other hand, it has to be large
enough for the GPUs to perform the rank-k update efficiently. Furthermore, the relative workload of
the CPUs and the GPUs changes during the algorithm, since the trailing submatrix becomes smaller
and smaller, which increases this problem even more.

In our contribution, we will compare how this problem influences the QR decomposition of a square
matrix on different architectures like an Intel Haswell based system with Nvidia K20 accelerators and
an IBM POWER 8 system with P100 accelerators, as well as the new NVlink interconnect. The later
is a system the very well demonstrates the effect of the increasing performance gap between CPUs
and GPUs. As possible solutions we accelerate the host part of the algorithm by integrating a parallel
Tall-Skinny QR (TSQR) decomposition with Householder-Reconstruction [1] and introduce automatic
block size adjustment, to cope with the decreasing GPU load due to the shrinking trailing submatrix.
Numerical experiments show the advantage of our proposed implementation over current state of the
art implementations in standard libraries such as MAGMA (see e.g. [2]).
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Parallel recursive polynomial expansion
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Density matrix recursive polynomial expansion is a powerful tool for linear scaling construction
of the density matrix in electronic structure calculations. With this approach, the computational
cost scales linearly with system size provided that small matrix elements are removed during the
recursive expansion [1, 2]. In general, the obtained sparsity patterns are irregular and are not known
beforehand. Therefore load balance in parallel computations is hard to achieve using traditional parallel
programming models. We parallelize the recursive expansion using a recently developed parallel block-
sparse matrix library [3], based on the Chunks and Tasks programming model [4, 5]. The programming
model is general and suits various problems in scientific computing that require parallelizing dynamic
hierarchical algorithms such as block-sparse matrix operations. The user divides data and work into
chunks and tasks which are dynamically distributed by the runtime library to the physical resources.
In the block-sparse matrix library matrices are represented by sparse quad-trees of chunks, where
chunks at the leaf level contain submatrices represented using a block-sparse structure. We evaluate
the performance of our implementation of the recursive polynomial expansion using problems coming
from electronic structure calculations, investigating linear scaling with system size and parallel strong
and weak scaling.
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Adaptive Coarse Spaces for the FETI-DP (Finite Element Tearing and Interconnecting) and BDDC
(Balancing Domain Decomposition by Constraints) domain decomposition methods are considered.
These adaptive coarse spaces are based on the computation of small local eigenvalue problems. A
special emphasis is put on the three dimensional case and on materials with heterogeneous material
parameters where coefficient jumps are not aligned with the interface of the domain decomposition.
Our new approach is based on solving local eigenvalue problems on faces, enriched by a selected, small
number of additional local eigenvalue problems on edges. The additional edge eigenvalue problems
make the method provably more robust. The introduction of the additional edge eigenvalue problems
yields a condition number that only depends on the tolerance of the local eigenvalue problems and
some properties of the domain decomposition and is independent of discontinuities of the material
parameters. Until recently, we have implemented the adaptive constraints by a balancing (or deflation)
approach. In the present work, we use a transformation of basis approach in combination with partial
subassembly. Compared to the case of constant coefficients on subdomains, the transformation of basis
approach has to be adapted for general heterogeneous materials. Numerical results are shown for linear
elasticity and composite materials supporting our theoretical findings.
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On the use of AMG methods designed for elasticity problems in inexact BDDC
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Traditionally, domain decomposition methods as BDDC (Balancing Domain Decomposition by
Constraints) or FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) use sparse direct
solvers as building blocks, i.e., to solve local subdomain problems and/or the coarse problem. Especially
the direct solution of the coarse problem can lead to an insufficient weak scaling behavior, since the
coarse space grows proportionally with the number of processors and subdomains. Therefore, the sparse
direct solvers are often replaced by spectrally equivalent preconditioners without loss of convergence
speed. In BDDC domain decomposition methods, such approaches have first been introduced in [1, 2],
and have since then successfully been used in large parallel codes.

In this talk, highly scalable implementations of different inexact BDDC (Balancing Domain Decom-
position by Constraints) variants are presented, and scalability results for linear elasticity problems in
two and three dimensions for up to 131 072 computational cores of the JUQUEEN BG/Q are shown.
In this methods, the inverse action of the partially coupled stiffness matrix is replaced by V-cycles of
an AMG (algebraic multigrid) method. The use of classical AMG for systems of PDEs, based on a
nodal coarsening approach is compared with a recent AMG method using an explicit interpolation of
the rigid body motions (global matrix approach; GM) [3]. It is illustrated that for systems of PDEs
an appropriate AMG interpolation is mandatory for fast convergence, i.e., using exact interpolation of
rigid body modes in elasticity.
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Incremental computation of the block triangular matrix exponential
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We study the problem of computing the matrix exponential of a block triangular matrix

Gn =




G0,0 G0,1 · · · G0,n

G1,1 · · · G1,n

. . .
...

Gn,n


 ∈ RN×N ,

(all diagonal matrices Gi,i are diagonal) in a peculiar way: Block column by block column, from left
to right. In other words, we wish to compute the sequence of matrix exponentials

exp(G0), exp(G1), exp(G2), . . . , (5)

which are the leading portions of exp(Gn), until some termination criterion is satisfied.
The need for such an evaluation scheme arises naturally in the context of option pricing in poly-

nomial diffusion models. In this setting a discretization process produces a sequence of nested block
triangular matrices, and their exponentials are to be computed at each stage, until a dynamically
evaluated criterion allows to stop.

Our algorithm is based on scaling and squaring. By carefully reusing certain intermediate quantities
from one step to the next, we can efficiently compute the sequence (5) of matrix exponentials. In our
implementation the computational overhead induced by this peculiar evaluation order is very moderate:
Asymptotically the number of operations for computing exp(Gn) increases only by a logarithmic factor
from O(log(‖Gn‖)N3) for the standard scaling and squaring algorithm to O(log(‖Gn‖)2N3).
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Disguised and new Quasi-Newton methods for nonlinear eigenvalue problems
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We consider the nonlinear eigenvalue problem (NEP) of the type: given M : C→ Cn×n a holomor-
phic function, determine (λ, v) ∈ C× (Cn \ {0}) such that

M(λ)v = 0. (6)

The vector v is called eigenvector and the scalar λ eigenvalue. Our approach is based on the well-know
augmented formulation of the NEP (6), stated as finding the zeros of a nonlinear system of equations:

F

([
v
λ

])
:=

[
M(λ)v
cHv − 1

]
= 0 (7)

which is equivalent to (6) if c ∈ Cn is not orthogonal to the eigenvector v. The problem (7) can be
approached with Newton’s method. One of the most common techniques to improve the convergence or
efficiency of Newton’s method is to replace the Jacobian matrix with a different matrix. We investigate
which types of approximations of the Jacobian matrix lead to competitive algorithms, and provide
convergence theory.

Among quasi-Newton methods, the most common variation is to keep the Jacobian matrix constant.
The factorization of this matrix can be precomputed before carrying out the iterations. This is benefi-
cial, e.g., in situations where the problem stems from a discretization of a PDE, as the resulting system
is often large and the Jacobian matrix is sparse with a structure allowing a sparse LU-factorization.
There are various flavors of Newton’s method available in the literature for this class of NEPs. Some of
these methods do have the property that the matrix in the linear system to be solved in every iteration
remains constant. However, these methods are in general not seen as Jacobian matrix modifications
of Newton’s method applied to (7), but are often derived from quite different viewpoints.

We derive new algorithms and also show that several well-established methods for NEPs can be
interpreted as quasi-Newton methods, and thereby provide insight to their convergence behavior. In
particular, we establish quasi-Newton interpretations of Neumaier’s residual inverse iteration [5] and
Ruhe’s method of successive linear problems [6]. The convergence analysis is based on theory for
quasi-Newton methods and Keldysh’s theorem [2] for NEPs [3, 4].

References

[1] E. Jarlebring and A. Koskela and G. Mele. Disguised and new Quasi-Newton methods for nonlinear
eigenvalue problems. arXiv preprint arXiv:1702.08492, 2017.

[2] R. Mennicken and M. Möller. Non-self-adjoint boundary eigenvalue problems. Gulf Professional
Publishing, 2003.

[3] W.-J. Beyn. An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl.
2012.

[4] D. B. Szyld and F. Xue. Local convergence of Newton-like methods for degenerate eigenvalues of
nonlinear eigenproblems. Numer. Math., 2015.

[5] A. Neumaier. Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer.
Anal., 1985.

[6] A. Ruhe. Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal., 1973.



Nonlinear Domain Decomposition Solvers on the Exascale

Oliver Rheinbacha, Axel Klawonnb, Martin Lanserb, and Matthias Uranb

a Technische Universität Bergakademie Freiberg, Fakultät für Mathematik und Informatik, Institut für
Numerische Mathematik und Optimierung, 09596 Freiberg, Germany

b Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany

Parallel nonlinear solvers are at the core of nonlinear, implicit simulations in computational sciences
and engineering, e.g., using finite elements in nonlinear mechanics. Nonlinear domain decomposition
methods are divide-et-impera strategies which make use of concurrent nonlinear subdomain problems to
more efficiently solve the original nonlinear problem. In addition to the nonlinear subdomain problems
also a coarse problem is solved, which introduces global coupling of the local nonlinear problems. In
the SPPEXA project EXASTEEL such solvers are applied to solve heterogeneous, nonlinear structural
mechanics problems. We present parallel scalability of versions of nonlinear domain decomposition
methods to millions of MPI ranks.



Krylov methods for low-rank commuting generalized Sylvester equations
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We consider a generalization of the Sylvester equation defined by

AX +XBT +
m∑

i=1

NiXM
T
i = C1C

T
2 , (1)

and its special case, the generalized Lyapunov equation

AX +XAT +

m∑

i=1

NiXN
T
i = CCT , (2)

where A,B,Ni,Mi ∈ Rn×n for i = 1, . . . ,m, and C1, C2, C ∈ Rn×r. These matrix equations appear
naturally in many applications; e.g., for bilinear- and stochastic control systems, where the singular
values of the solution to (2) relates to reachability and observability of certain states which is used
in model order reduction techniques [1]. Moreover, equations of the type (1) arise in the context of
discretizations of certain partial differential equations on rectangular domains, see e.g., [2, 3].

More precisely, we consider a specific class of large-scale problems of the form (1). Let L(X) :=
AX +XBT be the Sylvester operator and let Π(X) :=

∑m
i=1NiXM

T
i . We assume that ρ(L−1Π) < 1,

where ρ(·) denotes the spectral radius. Furthermore, we assume that the right-hand side of (1) has
low rank in the sense that r � n, and that the matrix coefficients are low-rank commuting, i.e.,
the commutators [A,Ni] := ANi − NiA, and [B,Mi] := BMi −MiB are matrices of low rank, for
i = 1, . . . ,m.

In this work we present a computational approach for this class of generalized Sylvester equations.
One recent successful approach to solve large-scale matrix equations is based on projection methods.
A necessary (but not sufficient) condition for the success of projection methods is low-rank approxima-
bility, i.e., the solution X ∈ Rn×n can be approximated by X̂ where ‖X − X̂‖ is small and X̂ has low
rank. We show the existence of such low-rank approximations for our class of problems. Projection
methods require a choice of subspace, where Krylov subspaces is one of the most common choices (but
certainly not the only one). Krylov subspaces require a choice of a starting vector/block. We show how
the low-rank commutation property can be exploited to derive natural and efficient choices of staring
blocks. The derived properties are combined, leading to a complete structure exploiting algorithm.

We present numerical simulations and compare with other methods for generalized Lyapunov equa-
tions [4, 5]. The code for the simulation is provided online for reproducibility, see link in [6].
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The iterative rational Krylov algorithm (IRKA)[3] is an attractive method for the model order
reduction of linear dynamical systems

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(8)

due to the fact that it is (locally) optimal in the H2 system norm and thus also minimizes the error
in the system output in the L∞ norm. Here, we limit ourselves to the case where (8) is stable with
matrices E,A ∈ Rn×n (E invertible), B ∈ Rn×1 and C ∈ R1×n and D = 0 to simplify notation. We
seek to approximate (8) by a much smaller system

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) +Du(t),
(9)

with Ê := W T
k EVk, Â := W T

k AVk ∈ Rk×k, B̂ := W T
k B ∈ Rk×1 and Ĉ := CVk ∈ R1×k and k � n.

To this end IRKA computes a sequence of Rational Krylov subspaces

Kk(E,A,B;σ) = span{(σ1E −A)−1B, . . . , (σkE −A)−1B} = spanVk,

Kk(ET , AT , CT ;σ) = span{(σ1ET −AT )−1CT , . . . , (σkE
T −AT )−1CT } = spanWk.

Here σ ∈ Ck is taken as the mirrored system poles of one reduced order model (9) to generate the next
one until convergence.

Thus, in each step of the algorithm a sequence of k linear systems of equations needs to be solved.
We want to investigate the optimal implementation on current hybrid CPU-GPU systems and present
3 candidate approaches using variants of the BiCG iteration as the solver for these linear systems. The
first approach tries to exploit preconditioner realignment following [2], the second exploits a Krylov
recycling in the spirit of [1] and the last one modifies the BiCG to run for all linear systems at the
same time and use matrix matrix products rather than several matrix vector products.
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The Arakawa C-grid scheme is perhaps the most well-known discretization of the incompressible
Navier-Stokes equations. The different variables (velocity components and pressure) are placed on
the faces and in the center of the grid cells, respectively, to achieve good conservation and stability
properties. In [1] an optimal ordering of the variables for the sequential LU-decomposition of the
resulting Jacobian was developed based on observations how fill is generated for such matrices during
Gaussian elimination. In [2] the method was used in a domain decomposition approach and extended by
a robust dropping strategy that leads to a preconditioner achieving a grid-independent convergence rate
of GMRES. Structure-preserving properties of this incomplete LU (ILU) factorization allow recursive
application and achieving optimal complexity of O(N logN) for scalar problems already.

In this talk we show that this goal can be achieved for the 3D C-grid Navier-Stokes equations as
well by using a special choice of space-filling subdomain shapes (parallelepipeda). We demonstrate
results with this novel partitioning approach for both direct factorization and the multi-level ILU
method on several thousand CPU cores. Possible applications include fully implicit time integration
and bifurcation analysis of fluid dynamics problems.
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On the convergence factor of the self-consistent field iteration
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The self-consistent field (SCF) iteration is an iterative algorithm used to solve a class of non-linear
eigenvalue problems of the form H(X)X = XΛ, XTX = I, where H : Rn×k → Rn×n, X ∈ Rn×k and
Λ ∈ Rk×k is a diagonal matrix. These problems arise frequently in the context of quantum chemistry
and electronic structure calculations as the discretized Kohn-Sham and Hartree-Fock equations, where
we are interested in computing the k smallest eigenvalues. Sufficient conditions for convergence of
SCF exist in the current literature, e.g. in, [1], [2] and [3]. In contrast to these results, we provide
a convergence theory based on the analysis of SCF as a fixed point iteration with the density matrix
XXT as the state of the algorithm. This allows us to provide necessary and sufficient conditions for
local convergence, and an exact formula for the convergence factor. We make several interpretations of
the convergence factor formula, e.g., in terms of |λk−λk+1|, also known as the HOMO-LUMO gap. The
exact characterization of the Jacobian of the fixed-point iteration to allows us to improve convergence,
and low-rank approximations appear to give us competitive improvements of this approach. Our
numerical experiments with various problem sizes and different values of k confirm our theoretical
predictions for the convergence factor and the acceleration.
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Asynchronous Krylov methods with deep pipelines
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The performance of Krylov method in the strong scaling limit is suffering due to the synchronization
latencies associated with the dot-products. We review the development of pipelined Krylov methods
that exploit asynchronous communication to overlap communication and computation. For example,
by reordering the operations in the conjugate gradients it is possible to execute the dot-product si-
multaneously with the sparse matrix vector products. We also introduce deep pipelines where the
dot-products are overlapping with multiple sparse matrix-vector products. These deep pipelines solve
most of the scaling problems. We also discuss the propagation of rounding errors.
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We analyse and model the performance of the sparse triangular solve step for sparse matrices as
it is implemented in PARDISO [1]. We employ the Roofline performance model [2], which assumes
code performance is either limited by floating point performance of the CPU or the attainable memory
bandwidth. The model is adapted to cover the different serial and parallel phases during solve and gives
an initial prediction of achievable performance. We then apply the ECM performance model [3, 4] for a
more accurate prediction of the solve step. The ECM model can be seen as an extension to the Roofline
model and allows us to analyse the runtime contributions stemming from the execution inside the core
and the different cache levels in the memory hierarchy. Hereby e.g., the impact of loop unrolling is
studied. From this single core performance analysis we predict the scaling behavior over the processor’s
cores.

Furthermore we establish an ECM model for a best case implementation. This is guided by the
previous analysis of PARDISO’s solve step. We include vectorization, which is only partially possible
as due to the sparse nature of the factor indirect accesses occur.

Finally the performance of the sparse solve step is evaluated on current Intel architectures like Ivy
Bridge, Haswell, Broadwell and Knights Landing as well as the recent AMD Ryzen processor and a
SX-ACE node, shown in Fig. 1. Additionally we implemented the solve step with intrinsics according
to our best case assumptions. Results are compared against the Roofline and ECM predictions. In
general we receive a much more precise prediction from the ECM model. However due to the indirect
addressing effects occur which are not covered by the model and need further investigation.
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Figure 1: Measured performance and predictions of the Roofline and ECMmodel on one core of different
hardware architectures for sparse triangular solve. The used factor with dimensions of 20 000× 20 000
elements is dense with around 200× 106 nonzero elements.
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We consider the two-sided Arnoldi method applied to the unsymmetric eigenvalue problem and
propose a Krylov–Schur type restarting method. We discuss the restart for regular Rayleigh–Ritz
extraction as well as harmonic Rayleigh–Ritz extraction. Additionally, we investigate the convergence
of the Ritz values and Ritz vectors and present generalizations of, e.g., the Bauer–Fike theorem and
Saad’s theorem. Applications of the two-sided Krylov–Schur method include the simultaneous com-
putation of left and right eigenvectors and the computation of eigenvalue condition numbers. We also
demonstrate how the method can be used to approximate pseudospectra and show that improvements
in quality can be obtained over approximations with the (one-sided) Arnoldi method.
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